
第五章 云计算框架下的大数据处理平台

▪ 2021年9月

目录 Contents

1 Google's Troika

2 Hadoop

3 Spark

4 Flink

5 Kubernetes

3Page .

▪ Goolgle File System

▪ The Google File System

▪ MapReduce

▪ MapReduce: Simplified Data Processing on Large Clusters

▪ BigTable

▪ Bigtable: A Distributed Storage System for Structured Data

Google's Troika

目录 Contents

1

2

3

4

Google's Troika

Hadoop

Spark

Flink

5 Kubernetes

5Page .

▪ The Apache™ Hadoop® project develops open-source software for

reliable, scalable, distributed computing.

▪ distributed processing of large data sets across clusters of computers

▪ scale up from single servers to thousands of machines

▪ detect and handle failures at the application layer

What is Hadoop

6Page .

Hadoop History

7Page .

▪ Hadoop Common: The common utilities

that support the other Hadoop modules.

▪ Hadoop Distributed File System (HDFS™): A

distributed file system that provides high-

throughput access to application data.

▪ Hadoop YARN: A framework for job

scheduling and cluster resource

management.

▪ Hadoop MapReduce: A YARN-based

system for parallel processing of large data

sets.

Hadoop Modules

8Page .

Hadoop Architecture

9Page .

▪ Name Node

▪ It manages the file system namespace by executing an operation like the

opening, renaming and closing the files.

▪ It simplifies the architecture of the system.

▪ Data Node

▪ It is the responsibility of DataNode to read and write requests from the file

system’s clients.

▪ It performs block creation, deletion, and replication upon instruction from the

NameNode.

▪ Job Tracker

▪ Task Tracker

Hadoop Architecture

10Page .

▪ Name Node

▪ Data Node

▪ Job Tracker

▪ The role of Job Tracker is to accept the MapReduce jobs from client and

process the data by using NameNode.

▪ Task Tracker

▪ It works as a slave node for Job Tracker.

▪ It receives task and code from Job Tracker and applies that code on the file.

This process can also be called as a Mapper.

Hadoop Architecture

11Page .

▪ Fast: process terabytes of data in minutes and Peta bytes in hours

▪ Scalable: be extended by just adding nodes in the cluster

▪ Cost Effective: really cost effective as compared to traditional relational

database management system

▪ Resilient to failures: HDFS has the property with which it can replicate data

over the network, so if one node is down or some other network failure

happens, then Hadoop takes the other copy of data and use it.

Hadoop Advantage

目录 Contents

1

2

3

4

Google's Troika

Hadoop

Spark

Flink

5 Kubernetes

13Page .

▪ Apache Spark is a unified analytics engine for large-scale data processing.

▪ It provides high-level APIs in Java, Scala, Python and R, and an optimized

engine that supports general execution graphs.

What is Spark

▪ It also supports a rich set of higher-level tools

▪ Spark SQL for SQL and structured data

processing

▪ MLlib for machine learning,

▪ GraphX for graph processing

▪ Structured Streaming for incremental

computation and stream processing.

14Page .

Spark Architecture

15Page .

▪ Resilient Distributed Datasets (RDD) is a fundamental data structure of

Spark.

▪ It is an immutable distributed collection of objects.

▪ Each dataset in RDD is divided into logical partitions, which may be

computed on different nodes of the cluster.

▪ RDDs can contain any type of Python, Java, or Scala objects, including

user-defined classes.

Programming Abstraction: RDD

16Page .

▪ Parallelize an existing collection to create RDD

▪ Load a dataset in an external storage system to create RDD

Create RDD

17Page .

▪ Two types of operations:

▪ transformations: create a new dataset from an existing one

▪ actions: return a value to the driver program after running a computation on

the dataset

▪ Example

▪ map is a transformation that passes each dataset element through a function

and returns a new RDD representing the results.

▪ reduce is an action that aggregates all the elements of the RDD using some

function and returns the final result to the driver program

RDD Operation: Transformation and Action

18Page .

Transformation Meaning

map(func) Return a new distributed dataset formed by
passing each element of the source through a
function func.

filter(func) Return a new dataset formed by selecting those
elements of the source on which func returns true.

flatMap(func) Similar to map, but each input item can be
mapped to 0 or more output items
(so func should return a Seq rather than a single
item).

mapPartitions(func) Similar to map, but runs separately on each
partition (block) of the RDD, so func must be of
type Iterator<T> => Iterator<U> when running
on an RDD of type T.

RDD Transformation

19Page .

Action Meaning

reduce(func) Aggregate the elements of the dataset using a
function func (which takes two arguments and
returns one). The function should be commutative
and associative so that it can be computed
correctly in parallel.

collect() Return all the elements of the dataset as an array
at the driver program. This is usually useful after a
filter or other operation that returns a sufficiently
small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to
take(1)).

RDD Action

20Page .

▪ Line 1: define a base RDD from an external file

▪ Line 2: define lineLengths as the result of a map transformation

▪ Line 3: Spark breaks the computation into tasks to run on separate

machines, and each machine runs both its part of the map and a local

reduction, returning only its answer to the driver program.

RDD Example

21Page .

▪ Speed

▪ Run workloads 100x faster.

▪ Ease of Use

▪ Write applications quickly in Java,

Scala, Python, R, and SQL.

Spark Advantages

22Page .

▪ Generality

▪ Combine SQL, streaming, and

complex analytics.

▪ Runs Everywhere

▪ Spark runs on Hadoop, Apache

Mesos, Kubernetes, standalone,

or in the cloud. It can access

diverse data sources.

Spark Advantages

23Page .

▪ Spark SQL is Apache Spark's

module for working with structured

data.

▪ Seamlessly mix SQL queries with

Spark programs.

▪ Connect to any data source the

same way.

▪ Run SQL or HiveQL queries on

existing warehouses.

▪ Connect through JDBC or ODBC.

Spark SQL

24Page .

▪ Spark Streaming makes it easy to

build scalable fault-tolerant

streaming applications.

▪ Ease of Use: Build applications

through high-level operators.

▪ Fault Tolerance: Stateful exactly-

once semantics out of the box.

▪ Spark Integration: Combine

streaming with batch and

interactive queries.

Spark Streaming

25Page .

▪ MLlib is Apache Spark's scalable machine learning library.

▪ ML algorithms include:

▪ Classification: logistic regression, naive Bayes,...

▪ Regression: generalized linear regression, survival regression,...

▪ Decision trees, random forests, and gradient-boosted trees

▪ Recommendation: alternating least squares (ALS)

▪ Clustering: K-means, Gaussian mixtures (GMMs),...

▪ Topic modeling: latent Dirichlet allocation (LDA)

▪ Frequent itemsets, association rules, and sequential pattern mining

▪ ML workflow utilities include:

▪ Feature transformations: standardization, normalization, hashing,...

▪ ML Pipeline construction

▪ Model evaluation and hyper-parameter tuning

▪ ML persistence: saving and loading models and Pipelines

MLlib

26Page .

▪ GraphX is Apache Spark's API for graphs and graph-parallel computation.

▪ GraphX extends the Spark RDD by introducing a new Graph abstraction

▪ GraphX exposes a set of fundamental operators.

▪ GraphX includes a growing collection of graph algorithms and builders to

simplify graph analytics tasks.

GraphX

27Page .

GraphX

// Assume the SparkContext has already been constructed
val sc: SparkContext

// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
sc.parallelize(Seq((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")
), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: RDD[Edge[String]] =
sc.parallelize(Seq(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

目录 Contents

1

2

3

4

Google's Troika

Hadoop

Spark

Flink

5 Kubernetes

29Page .

What is Flink?

▪ Apache Flink is a framework and distributed processing engine for stateful

computations over unbounded and bounded data streams.

▪ Flink has been designed to run in all common cluster environments,

perform computations at in-memory speed and at any scale.

30Page .

▪ Process Unbounded and Bounded Data

▪ Deploy Applications Anywhere

▪ Run Applications at any Scale

▪ Leverage In-Memory Performance

What can Flink function?

31Page .

▪ Bounded streams have a defined start and end.

▪ Unbounded streams have a start but no defined end.

▪ Apache Flink excels at processing unbounded and bounded data sets.

Process Unbounded and Bounded Data

32Page .

▪ Stateful Flink applications are optimized for local state access.

▪ Task state is always maintained in memory or, if the state size exceeds the

available memory, in access-efficient on-disk data structures.

▪ Hence, tasks perform all computations by accessing local, often in-

memory, state yielding very low processing latencies.

▪ Flink guarantees exactly-once state consistency in case of failures by

periodically and asynchronously checkpointing the local state to durable

storage.

Leverage In-Memory Performance

33Page .

▪ Most common types of applications

▪ Event-driven applications

▪ Data analytics applications

▪ Data pipeline applications

▪ Event-driven applications

Use Cases

34Page .

▪ Data analytics applications

Use Cases

35Page .

▪ Data pipeline applications

Use Cases

目录 Contents

1

2

3

4

Google's Troika

Hadoop

Spark

Flink

5 Kubernetes

37Page .

▪ Kubernetes is an open source container orchestration engine for

automating deployment, scaling, and management of containerized

applications.

▪ The open source project is hosted by the Cloud Native Computing

Foundation (CNCF).

What is Kubernetes?

38Page .

History of Deploying Applications

39Page .

▪ Traditional: ran applications on physical servers

▪ There was no way to define resource boundaries for applications in a physical

server, and this caused resource allocation issues.

▪ Virtualized: run multiple Virtual Machines (VMs) on a single physical

server's CPU

▪ Container: share the Operating System (OS) among the applications

▪ Resource utilization

▪ Resource isolation

▪ Loosely coupled

▪ Application-centric management

History of Deploying Applications

Kubernetes is an open source container orchestration engine.

40Page .

▪ Pod: A Pod (as in a pod of whales or pea pod) is a group of one or more

containers, with shared storage and network resources, and a specification

for how to run the containers.

▪ Node: Kubernetes runs your workload by placing containers into Pods to

run on Nodes. A node may be a virtual or physical machine, depending on

the cluster.

▪ Job: A Job creates one or more Pods and will continue to retry execution

of the Pods until a specified number of them successfully terminate.

▪ Service: A Service is an abstraction which defines a logical set of Pods and

a policy by which to access them (sometimes this pattern is called a micro-

service).

Kubernetes Concepts

41Page .

K8s Architecture

42Page .

▪ Control Plane Components

▪ kube-apiserver: expose the Kubernetes API

▪ etcd: consistent and highly-available key value store used as Kubernetes'

backing store for all cluster data

▪ kube-scheduler: watch for newly created Pods with no assigned node, and

selects a node for them to run on

▪ kube-controller-manager

▪ Node controller: Responsible for noticing and responding when nodes go down.

▪ Job controller: Watches for Job objects that represent one-off tasks, then creates

Pods to run those tasks to completion.

▪ Endpoints controller: Populates the Endpoints object (that is, joins Services & Pods).

▪ Service Account & Token controllers: Create default accounts and API access

tokens for new namespaces.

K8s Architecture

43Page .

▪ Node Components

▪ kubelet: An agent that runs on each node in the cluster.

▪ kube-proxy: a network proxy that runs on each node in your cluster,

implementing part of the Kubernetes Service concept.

▪ container runtime: responsible for running containers.

▪ Addons

▪ DNS

▪ Dashboard

▪ Device plugin

▪ …

K8s Architecture

44Page .

Kubernetes is Popular!

谢谢！

