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Big data background Az

= Since 1970, the amount of data grows larger and larger.

= To store the big data and process it, technologies such as Hadoop and Spark arisen.
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Big data background

= Because of the huge amount of data, it is not
able to be stored on one machine. Distributed

data storage was born.

= To process these data, distributed computing

methods were utilized with the huge database.
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Motivation e )

=

= Machine learning is one way to extract the useful information from the data.
= However, stand-alone machine learning is not capable of the growing data.

= Distributed computing is combined with machine learning and the distributed machine

learning comes.

= Using different learning processes to train several classifiers from distributed data sets increases

the possibility of achieving higher accuracy especially on a large-size domain
= Learning in a distributed manner provides a natural solution for large-scale learning

= Inherently scalable since the growing amount of data may be offset by increasing the number

of computers or processors

= overcomes the problems of centralized storage
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Architecture

a1 i

A server (or servers) to split data, separate it and aggregate the global model.

Many workers with separated data to train the separated models.

High speed networks.

A training scheme.
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Deployment A==

= QOverview
Distributed Machine Learning
General Purpose Distributed i Natively Distributed ML Single-Machine ML
Computing Frameworks - Systems Systems and Libraries
i Caffe2 Theano
Mahout * Keras e
« Apache Hadoop - » » CNTK < « Caffe
+ Apache Spark MLib « DistBelief NVIDIA s Scikit
+ Apache Flink > « DIANNE B NCCL « MLPack
« gfc. i « Tensorflow « NVIDIA Libraries
‘Hadoop/Spark « MxNet » etc.
. + AllReduce_ » etc.
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Cloud Machine Learning

Google Cloud Al
Microsoft Azure ML
Amazon AWS ML
IBM Watson Cloud
etc.
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Deployment A=

= MapReduce and Hadoop

= MapReduce is a framework for processing data and was developed by Google in order to

process data in a distributed setting.

= First, all data is split into tuples during the map phase, which is followed by the reduce phase,

where these tuples are grouped to generate a single output value per key.

= MapReduce and Hadoop heavily rely on the distributed file system in every phase of the

execution.

= Apache Spark

= Apache Spark has been developed to resolve the weakness of MapReduce in transformations in

linear algebra.

= The key difference here is the MapReduce tasks, spark can keep all the data in memory, which

saves expensive reads from the disk.
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Deployment ez

Baidu AllReduce

= uses common high-performance computing technology to iteratively train stochastic gradient

descent models on separate mini-batches of the training data.

= linear speedup when applying this technigue in order to train deep learning networks.

Horovod

= uses the NVIDIA Collective Communications Library (NCCL) for increased efficiency when

training on (Nvidia) GPUs.

Tensorflow

= contains the concepts of the computation graph and parameter server.

Caffe?

= This deep learning framework distributes machine learning through AllReduce algorithms using
NCCL.
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Shortcomings e )

Stable network requirement

= Distributed machine learning requires stable network for model transmission both in uploads

and downloads.

= The bandwidth and speed of all the connections are assumed to be similar.

Workers with similar abilities

= During local training, the computation power of all the workers are better to be similar for

synchronously aggregation of global model.

Data splitting
= Data is off-line stored and outdated.

= The data for local training is split by the server which may cause privacy leakage.

All these features are not suitable for the era of mobile internet nowadays.
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Edge computing

= (Classification
= Features
= Architecture

= |Implementations
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Classification

= QOverview
e — -
I Big Data Analytics !
N o e e e e e e = -
e e e S e -
A Resource Management :
Fog Computing ol o el el
Security and Privacy !
N ——— -
€= e e = = ~ L e e e e e oo
Real Time Application | I’ .‘I
| Execution 1

N e e e = = = = ==

Edge
Computing

Mobile Edge
Computing

Cloudlets

Hierarchical Computing |
| Architecture |
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Features A==

Dense geographical distribution

= Edge computing brings the Cloud services closer to the user by deploying numerous computing

platforms in the edge networks.

Mobility support

= The decoupling of the host identity from the location identity constitutes the key principle that

enables the mobility support in Edge computing.

Location awareness

= Users can employ various technologies such as cell phone infrastructure, GPS, or wireless access

points to find the location of electronic devices.

Proximity

= The availability of the computational resources and services in the local vicinity allows the users
to leverage the network context information for making offloading decisions and service usage

decisions. Similar as the service provider.
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Features A==

= Low latency

= The low latency of Edge computing enables the users to execute their resource-intensive and delay-sensitive

applications on the resource-rich Edge devices (e.g. router, access point, base station, or dedicated server).

= Context-awareness

= Context-awareness is the characteristic of mobile devices and can be defined interdependently to location

awareness.

= The real-time network information, such as network load and user location, can be used to offer the context-

aware services to the Edge users.

= Heterogeneity

= Heterogeneity in Edge computing refers to the existence of varied platforms, architectures, infrastructures,
computing, and communication technologies used by the Edge computing elements (end devices, Edge servers,

and networks).
= Edge server side-heterogeneity is mainly due to APIs, custom-built policies, and platforms.

= The network heterogeneity refers to the diversity of communication technologies that impact the Edge service

delivery.



Architecture

= The basic edge computing architecture

Cloud Servers

MEC Serverst \ MEC Servers
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Architecture A== N

= A typical architecture of edge computing networks
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Implementations Al
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Federated learning

= Motivation
= Classification
= Architecture
= Workflow

= Challenges and opportunities
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Motivation

= Data breach (quantity)

Middle East
India

United States
Brazil
France
Germany
Italy

United Kingdom
South Korea
Canada
Turkey
ASEAN
South Africa

Scandinavia

Japan

Australia

26,523
26,300
25,610
24,577
23,636
23,600
23,071
22,551
22,500
22,060
21,663
20,445

19,800

20000
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Motivation e )

= Data breach (cost)

Health
Financial
Energy
Industrial
Pharma
Technology
Education
Services
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Transportation
Communication
Consumer
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Motivation A== |

= Privacy protecting laws




Classification

= Horizontal federated learning
= Vertical federated learning

= Federated Transfer Learning
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Classification e o .

= Horizontal federated learning

Data from A

Samples
Horizontal
Federated Learning

Data from B

Features




Classification A= |

= Vertical federated learning

Data from A

Data from B Labels

Features




Classification A= |

= Federated Transfer Learning

Federated
Transfer Learning
Data from A @

Samples

Data from B

Features




Architecture (synchronous) A==

=

= Horizontal federated learning

Server A

Secure aggregation |

@) Sending encrypted gradients |
&
3

(@ Sending back model updates |

Updating models

Database B, Database B, Database B,
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Architecture (synchronous) A==

=

= Vertical federated learning

Federated model
O ?.-.'O

Encrypted model training

o,
Encrypted entity ahgnment I @ Sending public keys

@ Exchanging intermediate results

@ Computing gradients and loss

Updating models

a b
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Architecture (asynchronous)
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Workflow A==

Round i Round i+1
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. Device ! - —
¥ Devices check-in with the FL server, @ On-device training is performed,
O Server rejected ones are told to come back later model update is reported back
8 Persistent storage Server reads model checkpoint from Server aggregates updates into
9 persistent storage the global model as they arrive
x Rejection (“come back later!”) @ Model and conﬁ.guration are sent Server writes global model
to selected devices checkpoint into persistent storage

&t« Device or network failure




Challenges and opportunities

Expensive communication.

Systems heterogeneity.

Statistical heterogeneity.

Privacy concerns.




Challenges and opportunities A==/

= Expensive Communication.

= federated networks are potentially comprised of a massive number of devices, e.g., millions of
smart phones, and communication in the network can be slower than local computation by
many orders of magnitude.
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Challenges and opportunities A==/

= Systems Heterogeneity.

= The storage, computational, and communication capabilities of each device in federated networks may differ due
to variability in hardware (CPU, memory), network connectivity (3G, 4G, 5G, wifi), and power (battery level).

= Each device may also be unreliable.

Local model

Cloud aggregation

()
¢ ¢ » Edge model
L

"+ » Global model

Lo't:al model
uploading
Bugpeojumop
jepow abp3

Local model

training ¢ Device
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Challenges and opportunities

= Statistical Heterogeneity.
Devices frequently generate and collect data in a non-identically distributed manner across the network, e.g

mobile phone users have varied use of language in the context of a next word prediction task.

Increases the likelihood of stragglers.
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Challenges and opportunities A==/

= Privacy Concerns.

= communicating model updates throughout the training process can nonetheless

reveal sensitive information

____________ .
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Communication-efficiency

= Local updating
= Compression schemes

= Decentralized training




Local updating e [

=

= Mini-batch optimization methods have been shown to have limited flexibility to
adapt to communication-computation trade-offs that would maximally

leverage distributed data processing.

= Allow for a variable number of local updates to be applied on each machine in

parallel at each communication round

= For convex objectives, distributed local-updating primal-dual methods have

emerged as a popular way to tackle such a problem.
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Local updating

a1 i

= Left: Distributed (mini-batch) SGD: right: local updating schemes
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Compression schemes

e —f

= Sparsification, subsampling, and quantization can significantly reduce the size of

messages communicated at each round.

= |n federated environments, conventional approaches face challenges such as

low participation of devices.



> A A f
}‘i&)\:@)tff

7 SHANGHAI JIAO TONG UNIVERSITY

Compression schemes

a1 i

= Use lossy compression and dropout to reduce server-to-device communication.

Client

= (1) constructing a sub-model via Federated Dropout, and by (2) lossily compressing the
resulting object. This compressed model is then sent to the client, who (3) decompresses
and trains it using local data, and (4) compresses the final update. This update is sent back
to the server, where it is (5) decompressed and finally, (6) aggregated into the global

model



=

Decentralized Training R o

= |n federated learning, a star network (where a central server is connected to a

network of devices) Is the predominant communication topology.

= Decentralized algorithms can in theory reduce the high communication cost on

the central server.

E n E E_‘ E_ ______________ ﬂﬂ

Centralized topology Decentralized topology
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Decentralized training

= Hierarchical communication patterns.
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Privacy protection

= Privacy threats/attacks in federated learning (FL)
= Enhance the general privacy-preserving feature of FL

= Associated cost with the privacy-preserving techniques




Privacy threats/attacks in FL

= Membership inference attacks

= Unintentional data leakage and reconstruction through inference

= GANs-based inference attacks
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Privacy threats/attacks in FL A=z

= Membership inference attacks
= The neural network is vulnerable to memorize their training data which is prone to passive and
active inference attacks.

= The attacker misuses the global model to get information on the training data of the other users.
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Privacy threats/attacks in FL A=z

= Unintentional data leakage and reconstruction

= |s a scenario where updates or gradients from clients leak unintended information at

the central server.

Participant Save snapshots of joint model

and calculate the difference

Participant

8 Infer information
- . (" based on gradients
Server Adversary Aggregated
. 6, @ | gradients a
o
. Upload local updates —_— - : i Aggregated )
- ) » 3 @ X gradients
Download global model T

]
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Privacy threats/attacks in FL A=z

* GANSs-based inference attacks

= GANSs are generative adversarial networks that have gained much popularity in big data
domains.

= |tis possible to have potential adversaries among FL clients.
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Clients Malicious | /7 ™\ |
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Enhance privacy-preserving in FL

paas—u A

= Secure multi-party computation
= Differential privacy
= VerifyNet

= Adversarial training
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Enhance privacy-preserving in FL A=z

= Secure multi-party computation

= Secure the inputs of multi-participant while they jointly compute a model or a function.

Company A
Private
Data

Random
Number

MPC Secret

Encoding Share
[N N

Local computation

Company B xchange secret Company C
Secret ] Secret
@ A private shares according to @ A private
Data MPC protocols Data
MPC Secret MPC Secret
Encoding Share Encoding Share

b Random

Secret Number
Share

Random
Number

Local computation Local computation




Enhance privacy-preserving in FL

anS—4 A

= Secure multi-party computation

= Secure the inputs of multi-participant while they jointly compute a model or a function.

Local Training on
ML/DL Models

Company 1

Secret Shares

Generation & Exchanges

Company 1

Company 3 /
sl
c

v
N

/
e

Location Aggregation
On Secret Shares

~ Companyl |

ompany 2

>
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Company 3
A

Global Aggregation
On Secret Shares

Company 1
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Enhance privacy-preserving in FL A=z

= Secure multi-party computation

= In FL, the computing efficiency is increased immensely since it only needs to encrypt the

parameters instead of the large volume of data inputs.

Phase I: Model aggregation committee Phase IIl: Model aggregation using
election using peer-to-peer MPC | MPC service provided by comrmrittee
Committee Local model Madel
Election : Training | Aggregation
e
MPC : Local Iterations | MPC
: 1' . Global Epochs |

Model Aggregation Committee

SN

\

]
|

:
]
B

b H

Messages: a small array of committee
votes in form of secret shares

Messages: a huge tensor of model’s parameters
and weights in form of secret shares
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Enhance privacy-preserving in FL A=z

= Differential Privacy

= Add noise to personal sensitive attributes

! raw s private
answer answer

Untrusted
Aggregator
(Bob)

private

data Trusted

[}
[
1
1
1
1 ]
1 I
1 ]
1 ]
1 ]
: Curator - :
1 (Alice) 1
1 ]
’ » : y : Untrusted
: : I 1 Querier
l : I : (Bob)
! 1 1 raw data ]
| ] 1 ]
1 1 1 ]
1 1 1 1
1 1 1 ]
1 1 1 1
1 1 1 1
1 1 1 ]
1 1 1 ]
1 1 1 ]
: Data generators : : Data generators :
b (people) 4 L (people) y

Local privacy Global privacy




Enhance privacy-preserving in FL A=z

= Differential Privacy

= DPisintroduced to add noise to participants’ uploaded parameters

Noisy gradient gradient Local Dataset

pOoooo LDP A
i R
o S
Cloud Server
oo o LDP o
D | | ooooo ! W9

Upload gradients

Downy
Uploay Oraer o808 LDP e

L3
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Enhance privacy-preserving in FL A=z

= VerifyNet
= [t gets listed as a preferred mitigation strategy to preserve privacy as it provides double-masking

protocol which makes it difficult for attackers to infer training data.

Share encrypted local
gradients and global
parameters

Initialize keypairs <>
for each user
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Enhance privacy-preserving in FL A=z

= Adversarial training
= Evasion attacks from an adversarial user aims to fool ML models by injecting adversarial samples
Into the machine learning models.
= The attacker tries to impact the robustness of the FL model with perturbed data.
= Adversarial training, which is a proactive defense technique, tries all permutations of an attack
from the beginning of the training phase to make the FL global model robust to known

adversarial attacks.
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Enhance privacy-preserving in FL

SN\l L
= Adversarial training

Use GAN to generate fake training data.

Attacker’s GAN Victim’s GAN
A . [IN]]
X o/ nn .
o - » o) =
. Attacker
¢ Server

Client |

Client 2
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Associated cost

a1 i

Approach

Cost

Methodology

Secure Multi-party Computation
Differential Privacy

Hybrid
VerifyNet

Adversarial Training

Efficiency loss due to encryption

Accuracy loss due to added noise in client’s
model

Subdued cost on both efficiency and accuracy

Communication overhead

Computation power, training time for
adversarial samples

Encrypt uploaded parameters
Add random noise to uploaded
parameters

Encrypt the manipulated
parameter

Double-masking protocol
Verifiable aggregation results
Include adversarial samples in
training data
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