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Distributed machine learning



▪ Since 1970, the amount of data grows larger and larger. 

▪ To store the big data and process it, technologies such as Hadoop and Spark arisen. 

Big data background



▪ Because of the huge amount of data, it is not 

able to be stored on one machine. Distributed 

data storage was born. 

▪ To process these data, distributed computing 

methods were utilized with the huge database.

Big data background



▪ Machine learning is one way to extract the useful information from the data. 

▪ However, stand-alone machine learning is not capable of the growing data. 

▪ Distributed computing is combined with machine learning and the distributed machine 

learning comes. 

▪ Using different learning processes to train several classifiers from distributed data sets increases 

the possibility of achieving higher accuracy especially on a large-size domain

▪ Learning in a distributed manner provides a natural solution for large-scale learning

▪ inherently scalable since the growing amount of data may be offset by increasing the number 

of computers or processors

▪ overcomes the problems of centralized storage

Motivation



▪ A server (or servers) to split data, separate it and aggregate the global model. 

▪ Many workers with separated data to train the separated models. 

▪ High speed networks. 

▪ A training scheme. 

Architecture



▪ Overview

Deployment



▪ MapReduce and Hadoop

▪ MapReduce is a framework for processing data and was developed by Google in order to 

process data in a distributed setting.

▪ First, all data is split into tuples during the map phase, which is followed by the reduce phase, 

where these tuples are grouped to generate a single output value per key.

▪ MapReduce and Hadoop heavily rely on the distributed file system in every phase of the 

execution. 

▪ Apache Spark 

▪ Apache Spark has been developed to resolve the weakness of MapReduce in transformations in 

linear algebra.

▪ The key difference here is the MapReduce tasks, spark can keep all the data in memory, which 

saves expensive reads from the disk. 

Deployment



▪ Baidu AllReduce

▪ uses common high-performance computing technology to iteratively train stochastic gradient 

descent models on separate mini-batches of the training data.

▪ linear speedup when applying this technique in order to train deep learning networks. 

▪ Horovod

▪ uses the NVIDIA Collective Communications Library (NCCL) for increased efficiency when 

training on (Nvidia) GPUs.

▪ Tensorflow

▪ contains the concepts of the computation graph and parameter server.

▪ Caffe2

▪ This deep learning framework distributes machine learning through AllReduce algorithms using 

NCCL.

Deployment



▪ Stable network requirement

▪ Distributed machine learning requires stable network for model transmission both in uploads 

and downloads. 

▪ The bandwidth and speed of all the connections are assumed to be similar. 

▪ Workers with similar abilities

▪ During local training, the computation power of all the workers are better to be similar for 

synchronously aggregation of global model. 

▪ Data splitting

▪ Data is off-line stored and outdated.

▪ The data for local training is split by the server which may cause privacy leakage. 

▪ All these features are not suitable for the era of mobile internet nowadays. 

Shortcomings
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Edge computing



▪ Overview

Classification



▪ Dense geographical distribution

▪ Edge computing brings the Cloud services closer to the user by deploying numerous computing 

platforms in the edge networks. 

▪ Mobility support

▪ The decoupling of the host identity from the location identity constitutes the key principle that 

enables the mobility support in Edge computing.

▪ Location awareness

▪ Users can employ various technologies such as cell phone infrastructure, GPS, or wireless access 

points to find the location of electronic devices. 

▪ Proximity

▪ The availability of the computational resources and services in the local vicinity allows the users 

to leverage the network context information for making offloading decisions and service usage 

decisions. Similar as the service provider. 

Features



▪ Low latency

▪ The low latency of Edge computing enables the users to execute their resource-intensive and delay-sensitive 

applications on the resource-rich Edge devices (e.g. router, access point, base station, or dedicated server). 

▪ Context-awareness

▪ Context-awareness is the characteristic of mobile devices and can be defined interdependently to location 

awareness.

▪ The real-time network information, such as network load and user location, can be used to offer the context-

aware services to the Edge users.

▪ Heterogeneity

▪ Heterogeneity in Edge computing refers to the existence of varied platforms, architectures, infrastructures, 

computing, and communication technologies used by the Edge computing elements (end devices, Edge servers, 

and networks). 

▪ Edge server side-heterogeneity is mainly due to APIs, custom-built policies, and platforms. 

▪ The network heterogeneity refers to the diversity of communication technologies that impact the Edge service 

delivery.

Features



▪ The basic edge computing architecture

Architecture



▪ A typical architecture of edge computing networks

Architecture



Implementations
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Federated learning



Motivation

▪ Data breach (quantity) 



Motivation

▪ Data breach (cost) 



Motivation

▪ Privacy protecting laws



▪ Horizontal federated learning

▪ Vertical federated learning

▪ Federated Transfer Learning

Classification



▪ Horizontal federated learning

Classification



▪ Vertical federated learning

Classification



▪ Federated Transfer Learning

Classification



▪ Horizontal federated learning

Architecture (synchronous)



▪ Vertical federated learning

Architecture (synchronous)



Architecture (asynchronous)



Workflow



▪ Expensive communication.

▪ Systems heterogeneity. 

▪ Statistical heterogeneity. 

▪ Privacy concerns. 

Challenges and opportunities



▪ Expensive Communication. 

▪ federated networks are potentially comprised of a massive number of devices, e.g., millions of 

smart phones, and communication in the network can be slower than local computation by 

many orders of magnitude. 

Challenges and opportunities



▪ Systems Heterogeneity. 

▪ The storage, computational, and communication capabilities of each device in federated networks may differ due 

to variability in hardware (CPU, memory), network connectivity (3G, 4G, 5G, wifi), and power (battery level).

▪ Each device may also be unreliable.

Challenges and opportunities



▪ Statistical Heterogeneity. 

▪ Devices frequently generate and collect data in a non-identically distributed manner across the network, e.g., 

mobile phone users have varied use of language in the context of a next word prediction task.

▪ Increases the likelihood of stragglers.

Challenges and opportunities



▪ Privacy Concerns. 

▪ communicating model updates throughout the training process can nonetheless 

reveal sensitive information

Challenges and opportunities



▪ Local updating

▪ Compression schemes

▪ Decentralized training

Communication-efficiency 



▪ Mini-batch optimization methods have been shown to have limited flexibility to 

adapt to communication-computation trade-offs that would maximally 

leverage distributed data processing. 

▪ Allow for a variable number of local updates to be applied on each machine in 

parallel at each communication round

▪ For convex objectives, distributed local-updating primal-dual methods have 

emerged as a popular way to tackle such a problem. 

Local updating



▪ Left: Distributed (mini-batch) SGD; right: local updating schemes

Local updating



▪ Sparsification, subsampling, and quantization can significantly reduce the size of 

messages communicated at each round.

▪ In federated environments, conventional approaches face challenges such as 

low participation of devices. 

Compression schemes



▪ Use lossy compression and dropout to reduce server-to-device communication.

▪ (1) constructing a sub-model via Federated Dropout, and by (2) lossily compressing the 

resulting object. This compressed model is then sent to the client, who (3) decompresses 

and trains it using local data, and (4) compresses the final update. This update is sent back 

to the server, where it is (5) decompressed and finally, (6) aggregated into the global 

model

Compression schemes



▪ In federated learning, a star network (where a central server is connected to a 

network of devices) is the predominant communication topology.

▪ Decentralized algorithms can in theory reduce the high communication cost on 

the central server.

Decentralized Training

Centralized topology Decentralized topology



▪ Hierarchical communication patterns.

Decentralized training



▪ Privacy threats/attacks in federated learning (FL)

▪ Enhance the general privacy-preserving feature of FL

▪ Associated cost with the privacy-preserving techniques

Privacy protection



▪ Membership inference attacks

▪ Unintentional data leakage and reconstruction through inference

▪ GANs-based inference attacks

Privacy threats/attacks in FL



▪ Membership inference attacks

▪ The neural network is vulnerable to memorize their training data which is prone to passive and 

active inference attacks. 

▪ The attacker misuses the global model to get information on the training data of the other users. 

Privacy threats/attacks in FL



▪ Unintentional data leakage and reconstruction

▪ Is a scenario where updates or gradients from clients leak unintended information at 

the central server.

Privacy threats/attacks in FL



▪ GANs-based inference attacks

▪ GANs are generative adversarial networks that have gained much popularity in big data 

domains.

▪ It is possible to have potential adversaries among FL clients.

Privacy threats/attacks in FL



▪ Secure multi-party computation

▪ Differential privacy

▪ VerifyNet

▪ Adversarial training

Enhance privacy-preserving in FL



▪ Secure multi-party computation

▪ Secure the inputs of multi-participant while they jointly compute a model or a function.

Enhance privacy-preserving in FL



▪ Secure multi-party computation

▪ Secure the inputs of multi-participant while they jointly compute a model or a function.

Enhance privacy-preserving in FL



▪ Secure multi-party computation

▪ In FL, the computing efficiency is increased immensely since it only needs to encrypt the 

parameters instead of the large volume of data inputs. 

Enhance privacy-preserving in FL



▪ Differential Privacy

▪ Add noise to personal sensitive attributes

Enhance privacy-preserving in FL



▪ Differential Privacy

▪ DP is introduced to add noise to participants’ uploaded parameters

Enhance privacy-preserving in FL



▪ VerifyNet

▪ It gets listed as a preferred mitigation strategy to preserve privacy as it provides double-masking 

protocol which makes it difficult for attackers to infer training data.

Enhance privacy-preserving in FL



▪ Adversarial training

▪ Evasion attacks from an adversarial user aims to fool ML models by injecting adversarial samples 

into the machine learning models.

▪ The attacker tries to impact the robustness of the FL model with perturbed data.

▪ Adversarial training, which is a proactive defense technique, tries all permutations of an attack 

from the beginning of the training phase to make the FL global model robust to known 

adversarial attacks.

Enhance privacy-preserving in FL



▪ Adversarial training

▪ Use GAN to generate fake training data.

Enhance privacy-preserving in FL



Associated cost
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