SHANGHALI JIAO TONG UNIVERSITY

.
.
e
¥
o
T__m
N
Mﬂmﬂ
.
K
=
~_ru_.__M
o
i

£

H3= Contents

4 Emergence of Serverless Computing

Case Study: AWS Lambda and OpenWhisk

Limitations of Serverless Computing Platforms

Related Research on Serverless Computing

Y YIEXAA%

&
wsS’ SHANGHAI JIAO TONG UNIVERSITY

Berkeley View on Cloud Computing in 2009

1.
2.

The appearance of infinite computing resources on demand.
The elimination of an up-front commitment by cloud users.

The abllity to pay for use of computing resources on a short-term basis
as needed.

Economies of scale that significantly reduced cost due to many, very
large data centers.

Simplifying operation and increasing utilization via resource virtualization.

Higher hardware utilization by multiplexing workloads from different
organizations.

© ~N o o ~ w

down the service.

Geographic distribution of redundan

of disaster.
Load balancing and requg llize resources.

Autoscaling in resge O scale up or down the system.
Monitoring g still running well.
Logging to red ceded for debugging or performance tuning.
System upgrades Zding security patching.

Migration to new instances as they become available.

What is Serverless Computing?

anS—4 A

= Serverless = FaaS + BaaS
= FaaS: Cloud functions

= BaaS: services by cloud providers

B O u=E:c

= Monitoring AWS Lambda Google Cloud

®Kubeless §g® OpenWhisk”

= Deployment
= Fault tolerance

= Consistency

> > A)
/"iﬁ‘il@)ﬁ%

SHANGHAI JIAO TONG UNIVERSITY

What is Serverless Computing?

anS—4 A

Applications Web APls IE:::; sE; ‘;:g Future Serverless Applications
Cloud Object Key-Value Mobile Backend
Functions Storage Database Database
g Serverless | —— - ——— - ————————
5 Big Data Big Data M . i Future Serverless |
% Query Transform ©ssaging | i Cloud Services !
<
S
by Base Cloud wm | | vee Block IAM | | Billing | | Monitoring
= Platform Storage
1
o
Hardware Server Network Storage Accelerator

Characteristics e

/T N\T+

= Function-level management: The basic unit in serverless is function.
= Short-running: Functions are expected to complete in a short time period.

= Transparency: Users of serverless are agnostic about the execution
environment,

= Stateless: Functions are stateless and only describe the application logic for
task processing.

= Pay-as-you-go: the cloud provider charges only when the uploaded
functions are actually executed.

Serverless Applications J——

= Massive and independent parallelism

= PyWren uses AWS Lambda functions for linear algebra and machine learning
hyperparameter optimization.

= Use AWS Lambda to implement distributed matrix multiplication

= Serverless version Mapreduce and Spark

= Event-driven handlers

= The application waits for a specific kind of events.

' , Func 1 Func 1 |
= (General task-based applications
| Func 3 | |Func2| IFuncS‘ [Func4|| Func 3 | | Func 4 l
e] [rwes }——

(a) (b) (c)

Pros and Cons

= Pros

= For developers
= Cost saving.

= No worrying about deployment
and provision.

= Focus on business logic.
= For service providers

= More control over
infrastructures.

= Building a development
ecosystem.

= Cons

Startup latency.
Short-lived execution time.
No direct commmunication.

Limited resource, e.g. CPU,
memory.

No specialized hardware.

H3= Contents

Emergence of Serverless Computing

4E» Case Study: AWS Lambda and OpenWhisk

Limitations of Serverless Computing Platforms

Related Research on Serverless Computing

Y YIEXAA%

&
wsS’ SHANGHAI JIAO TONG UNIVERSITY

Case 1: AWS Lambda A

/T N\T+

A serverless compute service provided by Amazon since November 2014

2\

= managing runtimes AWS Lambda
Upload code as a ZIP file or container image, and run automatically

Let cloud users run code without
= provisioning or managing servers

= creating workload-aware cluster scaling logic

= maintaining event integrations

Write Lambda functions in most languages (Node.js, Python, Go, Java, and
more)

Trigger from over 200 AWS services and SaasS applications

SHANGHAI JIAO TONG UNIVERSITY

High-level Architecture

Frontend
= Accept users’ requests
= Authentication and authorization

* | oad functions’ metadata

Worker Manager
= Schedule functions

= Concurrency control

Placement

Frontend

Worker
Manager

Placement

~N

Function
Metadati_

-

Workers

J

[

Figure 2: High-level architecture of AWS Lambda event path,

showing control path (light lines) and data path (heavy lines)

= Create and maintain function execution slots

Worker

AWS Lambda Pricing

a1 i

= The price for Duration depends on the amount of memory you allocate to
your function.

Requests $0.20 per 1M requests
Duration $0.0000166667 for every GB-second
= Can allocate any amount of memory to your function between 128MB and

10,240MB, In IMB increments.

128 $0.0000000021
512 $0.0000000083
1024 $0.0000000167
1536 $0.0000000250

2048 $0.0000000333

AWS Lambda Pricing

anS—4 A

= |f you allocated 512MB of memory to your function, executed it 3 million
times in one month, and it ran for 1 second each time, your charges would
be calculated as follows:

= Monthly compute charges

The monthly compute price is $0.00001667 per GB-s and the free tier
provides 400,000 GB-s.

Total compute (seconds) = 3M = (1s) = 3,000,000 seconds

Total compute (GB-s) = 3,000,000 = 512MB/1024 = 1,500,000 GB-s
Total compute — Free tier compute = Monthly billable compute GB- s
1,500,000 GB-s — 400,000 free tier GB-s = 1,100,000 GB-s

Monthly compute charges = 1,100,000 » $0.00001667 = $18.34

AWS Lambda Pricing

anS—4 A

= |f you allocated 512MB of memory to your function, executed it 3 million
times in one month, and it ran for 1 second each time, your charges would
be calculated as follows:

= Monthly request charges

The monthly request price is $0.20 per 1 million requests and the free tier
provides 1M requests per month.

Total requests — Free tier requests = Monthly billable requests

3M requests — 1M free tier requests = 2M Monthly billable requests
Monthly request charges = 2M = $0.2/M = $0.40

= Total charges = Compute charges + Request charges = $18.34 + $0.40 =
$18.74 per month

Case 2: OpenWhisk P

= An open source, distributed Serverless platform
= Manage the infrastructure, servers and scaling using Docker containers

= Characteristics

= Deploys anywhere

Write functions in any language

Integrate easily with many popular services

Combine your functions into rich compositions

Scaling Per-Request & Optimal Utilization

Architecture

Nginx: a reverse proxy server.

Kafka: a distributed event streaming platfo

CouchDB

= subjects: authentication and authorization.

= whisks: code, resource requirements.

= activations: execution results.

Controller

Invoker: executing actions.

==
CouchDB

Procedure of Function Invocation

®©® ~N o o A W N

Entering the system: Nginx

Entering the system: Controller

Getting the action: CouchDB

Invoke the action: Controller

Forming a line: Kafka
Executing the code: Invoker

Storing the results: CouchDB

A=

SHANGHAI JIAO TONG UNIVERSITY

OpenWhisk Demo

1. Create a file named hello.py

greeting : " + name + "

print (greeting)

W ~J o O b W N =

return {" ": greeting}

2. Create an action called helloPy using hello.py

wsk action create helloPy hello.py

ok: created action helloPy

AR
Jesgy m.;.@‘& SHANGHAI JIAO TONG UNIVERSITY

OpenWhisk Demo e

3. Invoke the helloPy action using command-line parameters

wsk action invoke helloPy --result --param name World

4. Additional Resources

H3= Contents

Emergence of Serverless Computing
Case Study: AWS Lambda and OpenWhisk

4EJP Limitations of Serverless Computing Platforms

Related Research on Serverless Computing

Y YIEXAA%

&
wsS’ SHANGHAI JIAO TONG UNIVERSITY

Limitations of Serverless Computing P%{ngﬂ_

Inadequate storage for fine-grained operations
Lack of fine-grained coordination

Poor performance for standard communication patterns

B~ w o

Predictable Performance

Limitation 1: Storage

anS—4 A

= Difficult to support applications that have fine-grained state sharing needs

= Object storage services
= Including AWS S3, Azure Blob Storage, and Google Cloud Storage
= Highly scalable and provide inexpensive long-term object storage

= High access costs and high access latencies

= Key-value databases
= Such as AWS DynamoDB, Google Cloud Datastore
= Provide high 10O Per Second (IOPS)
= Expensive and can take a long time to scale up

= Not fault tolerant and not autoscale

Limitation 1:

Storage

SN\F%

SO

Cloud funections access

Transparent
Provisioning

Availability and
persistence guarantees

Latency (mean)

Storage capacity

(1 GB/month)
Throughput (1

O MB/s for 1 month)
I0PS

(1/s for 1 month)

Block
Storage
(e.g., AWS
EBS, IBM
Block
Storage)

Object
Storage
(e.g., AWS
S3, Azure
Blob Store,
Google
Cloud
Storage)

File System
(e.g., AWS
EFS,
Google
Filestore)

Elastic
Database
(e.g.,
Google
Cloud
Datastore,
Azure
Cosmos
DB)

Memory
Store (e.g.,
AWS Elas-

tiCache,

Google

Cloud
Memorys-
tore)

“Ideal”
storage
service for
serverless
computing

Limitation 2: Coordination e

= Requirement: If task A uses task B's output, there must be a way for A to
know when its input is available.

= None of the existing cloud storage services come with notification
capabilities.
= Current methods

= manage a VM-based system that

provides notifications External

Storage

= implement their own notification mechanism

Limitation 3: Communication

= Broadcast, aggregation, and shuffle are some of the most common
communication primitives in distributed systems.

= Communication patterns for these primitives for both VM-based and
function-based solutions.

O Functions/tasks DVM-based instances =g remote messages ---- local messages

5 B398

Broadcast Aggregation Shuffle
(a) VM-based communication patterns.

A A

Broadcast Aggregation

(b) Function-based communication patterns.

a1 i

Case: Distributed Machine Learning . .

= Parameter Server

Server

W, Aw,,

Worker n

= Serverless Parameter Server

Worker 1 ‘\

-

-
-
-
-
e
-

Server

-
-®
'l
Cd

Worker n

— Worker: download mode| s Server: download gradient
------- » Worker: upload gradient => Server: upload model

Feasible Optimization for Communication

= Optimizing the storage server

= Current storage services designed for short-running functions and thus
become a performance bottleneck.

= Pocket introduces multi-tier storage including DRAM, SSD and HDD.
= Locus also combines different kinds of storage devices to achieve both
performance and cost-efficiency for serverless analytics
= Optimizing the communication path

= Optimize the communication path when the relationship between functions is
known in advance.

= Another line of work tries to kick the storage server out of the communication
path with network mechanisms.

Limitation 4: Cold Start I8

= Cold start latency
* the time it takes to start a cloud function
* the time it takes to initialize the software environment

= application-specific initialization in user code

= Feasible optimization for cold start

= Container cache: When a function is finished, the serverless framework can
retain its runtime environment.

= Pre-warming: OpenWhisk can pre-launch Node.js containers if it has
observed that the workload mainly consists of Node js-based functions.

= Container optimization: Provide lean containers with much faster boot time
than vanilla ones

= Looking for other abstractions: Google gVisor, AWS FireCracker, Unikernel

H3= Contents

Emergence of Serverless Computing
Case Study: AWS Lambda and OpenWhisk
Limitations of Serverless Computing Platforms

4k Serverless Computng and Machine Learning

Y YIEXAA%

&
wsS’ SHANGHAI JIAO TONG UNIVERSITY

Related Works

= Optimizing the storage server
= Pocket

= Locus

= Optimizing the communication path
= SAND

= Serverless ML Training
= Siren
= Cirrus

= Serverless ML Inference
= Gillis

SHANGHAI JIAO TONG UNIVERSITY

Optimizing the storage server 5

=

= Pocket: Elastic Ephemeral Storage for Serverless Analytics

Job A JobB JobC
AANAAAAA AAAAA AAAAAAAAAA

AAAAAAA AAAN AAAAAAAAAAA
PUTY

i. Register job .- : ~
- Il De-register job .- 8 -
. s ; D |

Controller 4 N \
Metadata server(s)J \

ii. Allocate & assign =
resources for job

app-driven resource
allocation & scaling request routing

r | B N 0 0B B 5B 8 B B &R _ &8 02 B B B & B & B B B B B B B B & B B B B B B J
I (Storage server | [Storage server | [Storage server | [Storage server |
| CcPU CPU crul | cPU [I
Net Net Net Net I

| HDD Flash DRAM | DRAM
L _ g =) & h = I
| B N N N B BN B BN _ B B B _§B _§B &8 §B &8 §B &R B &R _§B _§B _§B _§B §B _§B §B §B & _&B &R _§B _§B _§B _§B _§B _§B _§B §B §B |

Figure 4: Pocket system architecture and the steps to reg-
ister job C, issue a PUT from a lambda and de-register
the job. The colored bars on storage servers show used
and allocated resources for all jobs in the cluster.

Optimizing the storage server 5

=

= Locus: Shuffling Fast and Slow on Serverless Architecture

= =1
Rounda: . A_ Ié A I‘num reqs = num mergers = 10°

5TB partltlor‘ 5B ImergeI 5TB

Clean cache afterleach ron.lnd |
|

I “es
Round2: . A. I él A' I ‘I Afinal 100...201

5TB partitioh 5TB mergel 5TB merg

I I LR
. 10000...10100
él A ‘l
Round2o: . AI]

5TB partitioh 5TB | mergel 5TB |
I | | |
I | | I
Redis S3
L | L I

SHANGHAI JIAO TONG UNIVERSITY

Optimizing the communication path .~

= SAND: Towards High-Performance Serverless Computing

Global Global] |Global | |Global| |Global
Message Queue] |Queue] |Queue] |Queue] ...
Bus fl fz f; f4

Local || Local

QueueljQueue

OV 1& IOV O |

LAPP. Sandbox | pApp. Sandbox 11 App. Sandbox |

Host, Host;

Serverless Computing and Machine L%&%gﬂﬁ

= Training Stage

Worker
— Dataset
[]

Shard

Dataset- —» Model Training — Hyperpa_rameter
Preprocessing Tuning

Serverless Computing and Machine L%&%g“ﬁ

= Inference Stage

Data Sources ML Inference Host Data Destinations

Apache
Kafka
ML Inference

System

Application
Logs Web
Applications

ML Model

Internet
of Things

Serverless Computing and Machine L%&%gﬁ

= Training Stage
= Computing intensive

= Parallel execution

= Inference Stage ' S e r\/e r‘ eSS
B Computing

= High availability
= Other SLA requirements

Distributed Machine Learning
with a Serverless Architecture

5 . 0 ;
Hao Wang', Di Niu? and Baochun Li'

YUniversity of Toronto, {haowang, bli} @ece.utoronto.ca 2 University of Alberta, dniu@ualberta.ca

SHANGHAI JIAO TONG UNIVERSITY

Siren e —f

= Motivation

= parallel computing
= variant resource requirement

* trial-and-error

= Contribution
= combine serverless computing and machine learning
= utilize reinforcement learning for resource scheduling

= reduce job completion time by 44% for training jobs

S > A g
\ AKX EAY

’ 7 SHANGHAI JIAO TONG UNIVERSITY

Siren ANFRl

—————

I User- | code

: Defined ! package . Stateless
: Model Functions
|

Step 2

API Libs ' e =

|
o o o o 1 [

W resource scheme , (nction status -Step 3
- / Local Client Jt \

action DRL states Function
Scheduler = <

Agent Manager

Fig. 2: The system architecture and workflow of SIREN.

S > A i
}‘iﬁ)\:@)t'?

SHANGHAI JIAO TONG UNIVERSITY

Cirrus e [

CiIrRrusS: a Serverless Framework for End-to-end ML Workflows

Joao Carreira Pedro Fonseca Alexey Tumanov
University of California, Berkeley Purdue University Georgia Institute of Technology
joao@berkeley.edu pfonseca@purdue.edu atumanov(@gatech.edu

Andrew Zhang Randy Katz

University of California, Berkeley University of California, Berkeley
andrewmzhang@berkeley.edu randykatz@berkeley.edu

Cirrus

= Machine Learning
= Qver-provisioning

= Explicit resource management

= Serverless Computing
= Small local memory and storage
= Low bandwidth and lack of P2P communication
= Short-lived and unpredictable launch times

= Lack of fast shared storage

Cirrus

A=z

| Lambda Worker
Dashboard Data iterator API
Minibatch buffer
Python API Sparse LR| | Mat. Fact. || LDA
Client Frontend . Data store client API
. : put ‘I‘ get
Preproc. || Training || Tuning — (gradient) |(model)
Create/Stop Task PS API Key-value API =8
Client Backend SGD ||Adagrad|| Models
Task Lambda
Key-val
Scheduler| | Manager Momentum || REY7Valies
1
| 1
< Client side Server side >
(stateful) (stateless)

Gillis e 7

= Best Paper Runner Up of IEEE ICDCS 2021

Gillis: Serving Large Neural Networks in Serverless
Functions with Automatic Model Partitioning

Minchen Yu*, Zhifeng Jiang*, Hok Chun Ng*, Wei Wang*, Ruichuan Chen’, Bo Li*
*Hong Kong University of Science and Technology
{myuaj, zjiangaj, hcngac, weiwa, bli} @cse.ust.hk
TNokia Bell Labs
ruichuan.chen @nokia-bell-labs.com

SHANGHAI JIAO TONG UNIVERSITY

Gillis J—

= Problem: Serverless functions have constrained resources in CPU and
memory, making them inefficien or infeasible to serve large neural

networks.

= Design
= Fork-join computing model
= Coarse-grained model grouping

= Two model partition algorithms

Worker 1
|:: Worker n J

Query —» Master

!

1

H
O
O
O

Fig. 5: An illustration of branch merging, where two parallel

Fig. 4: The fork-join model for function coordination. ~ Pranch modules are merged into one layer.

S > A 4
)‘i&)\:@)tff

5/ SHANGHAI JIAO TONG UNIVERSITY

Gillis A=z

= Workflow

= Runtime Profiling

= Model Partition
= Latency-optimal algorithm

= SLO-aware algorithm

= Deployment

Runtime Profiling Model Partitioning Phase Deployment Phase

Qxnet @@ | T3 paritoning { e + S oemn

Model Runtime Comm. Latency

Input DNN Model -
train perform Model Partitions o
& warm up

[Performance } + [Algorithms [Latency—OptimaI” SLO-Aware]] LWS 3 WNIR

Model Serverless Platforms

