
第六章 新型云计算平台——无服务器计算

▪ 2021年9月

目录 Contents

1 Emergence of Serverless Computing

2 Case Study: AWS Lambda and OpenWhisk

3 Limitations of Serverless Computing Platforms

4 Related Research on Serverless Computing

3Page .

1. The appearance of infinite computing resources on demand.

2. The elimination of an up-front commitment by cloud users.

3. The ability to pay for use of computing resources on a short-term basis

as needed.

4. Economies of scale that significantly reduced cost due to many, very

large data centers.

5. Simplifying operation and increasing utilization via resource virtualization.

6. Higher hardware utilization by multiplexing workloads from different

organizations.

Berkeley View on Cloud Computing in 2009

4Page .

1. Redundancy for availability, so that a single machine failure doesn’t take

down the service.

2. Geographic distribution of redundant copies to preserve the service in case

of disaster.

3. Load balancing and request routing to efficiently utilize resources.

4. Autoscaling in response to changes in load to scale up or down the system.

5. Monitoring to make sure the service is still running well.

6. Logging to record messages needed for debugging or performance tuning.

7. System upgrades, including security patching.

8. Migration to new instances as they become available.

Eight Issues in Setting up Cloud Environment

5Page .

▪ Serverless = FaaS + BaaS

▪ FaaS: Cloud functions

▪ BaaS: services by cloud providers

▪ Deployment

▪ Fault tolerance

▪ Consistency

▪ Monitoring

▪ …

What is Serverless Computing?

6Page .

What is Serverless Computing?

7Page .

▪ Function-level management: The basic unit in serverless is function.

▪ Short-running: Functions are expected to complete in a short time period.

▪ Transparency: Users of serverless are agnostic about the execution

environment.

▪ Stateless: Functions are stateless and only describe the application logic for

task processing.

▪ Pay-as-you-go: the cloud provider charges only when the uploaded

functions are actually executed.

Characteristics

8Page .

▪ Massive and independent parallelism

▪ PyWren uses AWS Lambda functions for linear algebra and machine learning

hyperparameter optimization.

▪ Use AWS Lambda to implement distributed matrix multiplication

▪ Serverless version Mapreduce and Spark

▪ Event-driven handlers

▪ The application waits for a specific kind of events.

▪ General task-based applications

Serverless Applications

Page .

▪ Pros

▪ For developers

▪ Cost saving.

▪ No worrying about deployment

and provision.

▪ Focus on business logic.

▪ For service providers

▪ More control over

infrastructures.

▪ Building a development

ecosystem.

▪ Cons

▪ Startup latency.

▪ Short-lived execution time.

▪ No direct communication.

▪ Limited resource, e.g. CPU,

memory.

▪ No specialized hardware.

▪ ...

Pros and Cons

目录 Contents

1 Emergence of Serverless Computing

2 Case Study: AWS Lambda and OpenWhisk

3 Limitations of Serverless Computing Platforms

4 Related Research on Serverless Computing

11Page .

▪ A serverless compute service provided by Amazon since November 2014

▪ Let cloud users run code without

▪ provisioning or managing servers

▪ creating workload-aware cluster scaling logic

▪ maintaining event integrations

▪ managing runtimes

▪ Upload code as a ZIP file or container image, and run automatically

▪ Write Lambda functions in most languages (Node.js, Python, Go, Java, and

more)

▪ Trigger from over 200 AWS services and SaaS applications

Case 1: AWS Lambda

12Page .

▪ Frontend

▪ Accept users’ requests

▪ Authentication and authorization

▪ Load functions’ metadata

▪ Worker Manager

▪ Schedule functions

▪ Concurrency control

▪ Placement

▪ Create and maintain function execution slots

▪ Worker

High-level Architecture

13Page .

▪ The price for Duration depends on the amount of memory you allocate to

your function.

▪ Can allocate any amount of memory to your function between 128MB and

10,240MB, in 1MB increments.

AWS Lambda Pricing

Price

Requests $0.20 per 1M requests

Duration $0.0000166667 for every GB-second

Memory (MB) Price per 1ms

128 $0.0000000021

512 $0.0000000083

1024 $0.0000000167

1536 $0.0000000250

2048 $0.0000000333

14Page .

▪ If you allocated 512MB of memory to your function, executed it 3 million

times in one month, and it ran for 1 second each time, your charges would

be calculated as follows:

▪ Monthly compute charges

▪ The monthly compute price is $0.00001667 per GB-s and the free tier

provides 400,000 GB-s.

▪ Total compute (seconds) = 3M * (1s) = 3,000,000 seconds

▪ Total compute (GB-s) = 3,000,000 * 512MB/1024 = 1,500,000 GB-s

▪ Total compute – Free tier compute = Monthly billable compute GB- s

▪ 1,500,000 GB-s – 400,000 free tier GB-s = 1,100,000 GB-s

▪ Monthly compute charges = 1,100,000 * $0.00001667 = $18.34

AWS Lambda Pricing

15Page .

▪ If you allocated 512MB of memory to your function, executed it 3 million

times in one month, and it ran for 1 second each time, your charges would

be calculated as follows:

▪ Monthly request charges

▪ The monthly request price is $0.20 per 1 million requests and the free tier

provides 1M requests per month.

▪ Total requests – Free tier requests = Monthly billable requests

▪ 3M requests – 1M free tier requests = 2M Monthly billable requests

▪ Monthly request charges = 2M * $0.2/M = $0.40

▪ Total charges = Compute charges + Request charges = $18.34 + $0.40 =

$18.74 per month

AWS Lambda Pricing

16Page .

▪ An open source, distributed Serverless platform

▪ Manage the infrastructure, servers and scaling using Docker containers

▪ Characteristics

▪ Deploys anywhere

▪ Write functions in any language

▪ Integrate easily with many popular services

▪ Combine your functions into rich compositions

▪ Scaling Per-Request & Optimal Utilization

Case 2: OpenWhisk

17Page .

▪ Nginx: a reverse proxy server.

▪ Kafka: a distributed event streaming platform.

▪ CouchDB

▪ subjects: authentication and authorization.

▪ whisks: code, resource requirements.

▪ activations: execution results.

▪ Controller

▪ Invoker: executing actions.

Architecture

18Page .

1. Entering the system: Nginx

2. Entering the system: Controller

3. Authentication and Authorization: CouchDB

4. Getting the action: CouchDB

5. Invoke the action: Controller

6. Forming a line: Kafka

7. Executing the code: Invoker

8. Storing the results: CouchDB

Procedure of Function Invocation

19Page .

1. Create a file named hello.py

2. Create an action called helloPy using hello.py

OpenWhisk Demo

20Page .

3. Invoke the helloPy action using command-line parameters

4. Additional Resources

▪ Using External Python Libraries in OpenWhisk

▪ Auto Retweeting Example in Python

OpenWhisk Demo

目录 Contents

1 Emergence of Serverless Computing

2 Case Study: AWS Lambda and OpenWhisk

3 Limitations of Serverless Computing Platforms

4 Related Research on Serverless Computing

22Page .

1. Inadequate storage for fine-grained operations

2. Lack of fine-grained coordination

3. Poor performance for standard communication patterns

4. Predictable Performance

Limitations of Serverless Computing Platforms

23Page .

▪ Difficult to support applications that have fine-grained state sharing needs

▪ Object storage services

▪ Including AWS S3, Azure Blob Storage, and Google Cloud Storage

▪ Highly scalable and provide inexpensive long-term object storage

▪ High access costs and high access latencies

▪ Key-value databases

▪ Such as AWS DynamoDB, Google Cloud Datastore

▪ Provide high IO Per Second (IOPS)

▪ Expensive and can take a long time to scale up

▪ Not fault tolerant and not autoscale

Limitation 1: Storage

24Page .

Limitation 1: Storage

25Page .

External
Storage

1f

2f

3f

(1) put

(2) get
(3) put

(4) get

Limitation 2: Coordination

▪ Requirement: If task A uses task B’s output, there must be a way for A to

know when its input is available.

▪ None of the existing cloud storage services come with notification

capabilities.

▪ Current methods

▪ manage a VM-based system that

provides notifications

▪ implement their own notification mechanism

26Page .

▪ Broadcast, aggregation, and shuffle are some of the most common

communication primitives in distributed systems.

▪ Communication patterns for these primitives for both VM-based and

function-based solutions.

Limitation 3: Communication

Page .

▪ Parameter Server ▪ Serverless Parameter Server

Case: Distributed Machine Learning

28Page .

▪ Optimizing the storage server

▪ Current storage services designed for short-running functions and thus

become a performance bottleneck.

▪ Pocket introduces multi-tier storage including DRAM, SSD and HDD.

▪ Locus also combines different kinds of storage devices to achieve both

performance and cost-efficiency for serverless analytics

▪ Optimizing the communication path

▪ Optimize the communication path when the relationship between functions is

known in advance.

▪ Another line of work tries to kick the storage server out of the communication

path with network mechanisms.

Feasible Optimization for Communication

29Page .

▪ Cold start latency

▪ the time it takes to start a cloud function

▪ the time it takes to initialize the software environment

▪ application-specific initialization in user code

▪ Feasible optimization for cold start

▪ Container cache: When a function is finished, the serverless framework can

retain its runtime environment.

▪ Pre-warming: OpenWhisk can pre-launch Node.js containers if it has

observed that the workload mainly consists of Node.js-based functions.

▪ Container optimization: Provide lean containers with much faster boot time

than vanilla ones

▪ Looking for other abstractions: Google gVisor, AWS FireCracker, Unikernel

Limitation 4: Cold Start

目录 Contents

1 Emergence of Serverless Computing

2 Case Study: AWS Lambda and OpenWhisk

3 Limitations of Serverless Computing Platforms

4 Serverless Computng and Machine Learning

31Page .

▪ Optimizing the storage server

▪ Pocket

▪ Locus

▪ Optimizing the communication path

▪ SAND

▪ Serverless ML Training

▪ Siren

▪ Cirrus

▪ Serverless ML Inference

▪ Gillis

Related Works

32Page .

▪ Pocket: Elastic Ephemeral Storage for Serverless Analytics

Optimizing the storage server

33Page .

▪ Locus: Shuffling Fast and Slow on Serverless Architecture

Optimizing the storage server

Redis S3

34Page .

▪ SAND: Towards High-Performance Serverless Computing

Optimizing the communication path

35Page .

▪ Training Stage

Serverless Computing and Machine Learning

36Page .

▪ Inference Stage

Serverless Computing and Machine Learning

37Page .

▪ Training Stage

▪ Computing intensive

▪ Parallel execution

▪ Inference Stage

▪ High throughput

▪ Low latency

▪ High availability

▪ Other SLA requirements

Serverless Computing and Machine Learning

Serverless
Computing

38Page .

Siren

39Page .

Siren

▪ Motivation

▪ parallel computing

▪ variant resource requirement

▪ trial-and-error

▪ Contribution

▪ combine serverless computing and machine learning

▪ utilize reinforcement learning for resource scheduling

▪ reduce job completion time by 44% for training jobs

40Page .

Siren

41Page .

Cirrus

42Page .

▪ Machine Learning

▪ Over-provisioning

▪ Explicit resource management

▪ Serverless Computing

▪ Small local memory and storage

▪ Low bandwidth and lack of P2P communication

▪ Short-lived and unpredictable launch times

▪ Lack of fast shared storage

Cirrus

43Page .

Cirrus

44Page .

▪ Best Paper Runner Up of IEEE ICDCS 2021

Gillis

45Page .

▪ Problem: Serverless functions have constrained resources in CPU and

memory, making them inefficien or infeasible to serve large neural

networks.

▪ Design

▪ Fork-join computing model

▪ Coarse-grained model grouping

▪ Two model partition algorithms

Gillis

46Page .

▪ Workflow

▪ Runtime Profiling

▪ Model Partition

▪ Latency-optimal algorithm

▪ SLO-aware algorithm

▪ Deployment

Gillis

谢谢！

