
第四章 传统云计算系统构成概
述——OpenStack

▪ 2021年9月

Contents

1 Design Philosophy

2 Industrial Standard

3 Modularization

4 Safety Considerations

5 Deployment

▪ Cloud computing is a model for enabling:

▪ Ubiquitous, on-demand access

▪ A shared pool of configurable computing resources

Design Philosophy

▪ Massive scale

▪ Agility \ Elasticity

▪ Abstraction

▪ Automation

▪ Infinite capacity

▪ Converged API’s

▪ Quick provisioning of resources

▪ On demand service

▪ Metering (billing)

▪ Pay as you go

“X as a service” (XaaS) model

Hosted apps Dev tools
DB tools
Analytics

Operating
systems

Servers and
storage

Networking
firewalls
security

Data center
physical

plant/building

(Infrastructure)

(Platform)

(Software)

Other services:

FaaS (Function); BMaaS (Bare Metal); DBaaS (Database); AIaaS (Deep Learning)

IaaS: the basic building block

▪ VM on demand

▪ VM management

▪ Storage for VM and files

▪ Multi-tenancy

▪ Metering

▪ Orchestration

Virtualization Cloud

Definition Technology Methodology

Purpose Create multiple simulated environments from 1
physical hardware system

Pool and automate virtual resources for on-demand
use

Use Deliver packaged resources to specific users for a
specific purpose

Deliver variable resources to groups of users for a
variety of purposes

Configuration Image-based Template-based

Lifespan Years (long-term) Hours to months (short-term)

Cost High capital expenditures (CAPEX),
low operating expenses (OPEX)

Private cloud: High CAPEX, low OPEX
Public cloud: Low CAPEX, high OPEX

Scalability Scale up Scale out

Workload Stateful Stateless

Tenancy Single tenant Multiple tenants

Virtualization v.s. Cloud

Public Cloud Private Cloud Hybrid Cloud

No maintenance costs Dedicated, secure Policy-driven deployment

High scalability, flexibility Regulation compliant High scalability, flexibility

Reduced complexity Customizable Minimal security risks

Flexible pricing High scalability
Workload diversity

supports high reliability

Agile for innovation Efficient Improved security

Public / Private / Hybrid cloud

Public Cloud Private Cloud Hybrid Cloud

Potential for high TCO Expensive with high TCO Potential for high TCO

Decreased security and
availability

Minimal mobile access
Compatibility and

integration

Minimal control Limiting infrastructure Added complexity

Public / Private / Hybrid cloud

▪ Presentation layer: components interact with users

▪ Logic layer: control, deployment, scheduling, rules, registers, logging

Cloud platform architecture

▪ Programmable infrastructure that lays a common set of APIs on top of

compute, network, and storage resources.

▪ One platform for VM, containers, and bare metal

OpenStack intro

▪ Container: lightweight, high packing density, fewer resource consumption,

migrate easily

▪ Potential security risks

▪ VM: Isolated, hardware virtualization, take up more resources

Container and VM

▪ Business drivers:

1 – Avoid vendor lock-in

2 – Accelerate innovation

3 – Operational efficiency

OpenStack intro

Open
Source Open

Design

Open
Community

Open
Development

Retail / E-commerce

Financial

Telecom,Insurance,Entertainment, Acedemic, Research, ……
See more at: openstack.org/user-stories

Energy and manufacturing

MEMBERS

81,000+

ORGANIZATIONS

670+

OpenStack landscape

OpenStack landscape

1

2

3

4

5

6

7

▪ Responsible for managing compute resources

▪ Nova is virtualization agnostic:

▪ Libvirt (KVM, QEMU, Xen, LXC), XenAPI, Hyper-V, Vmware ESX, PowerVM, etc.

▪ Provides massively scalable, on demand, self service access to compute

resources.

▪ Features:

▪ VM scheduling by defining drivers that interact with underlying virt mechanism

▪ Authenticated instance and database access

▪ Libvirt driver libvirtd support that uses KVM as the hypervisor

Nova: compute resources

▪ nova-api: receives HTTP requests, converts commands, and call other

components via message queue or HTTP

▪ nova-scheduler: decides which host gets each instance

▪ nova-conductor: handles coordination (build/resize), acts as DB proxy

▪ nova-compute: manages comm. with hypervisor and VM

Nova components

▪ Responsible for managing VM images

▪ Provides an API for disk and service image management and registration

▪ Supports multiple image formats:

▪ ISO

▪ QCOW2 (for QEMU), Raw (for QEMU/KVM and Xen)

▪ VDI (for VirtualBox), VHD (for Hyper-v), VMDK (for Vmware)

▪ AKI, AMI, ARI (for Amazon, including kernel, machine, ramdisk images)

▪ OVF (for Open Virtualization Format)

▪ Supports image conversion: qemu-img

Glance: image service

$ qemu-img convert -f raw -O qcow2 image.img image.qcow2

Glance components

▪ glance-api: accepts image API calls

▪ glance-registry: stores, processes and retrieves image metadata

▪ Database: stores image metadata

▪ Image Store: variety of locations where an image can be stored

Image status

Queued Upload not finished

Saving Uploading image

Active Image is fully available

Killed Upload error occurred

Deleted Image is no longer available

Pending_delete Non-recoverable image

▪ Responsible for block device provisioning of VMs

▪ Provides an API for various storage array vendors to manage their block

device and translate commands between Nova and other services

▪ Best used for performance-sensitive scenarios, such as database storage

or expandable file systems

▪ Features:

▪ Volumes, persistent R/W Block Storage devices

▪ Snapshots, can be used to create a new instance

▪ Backups, an archived copy of a volume

Cinder: block storage

Objectives

• Storage for running VM disk
volumes on a host

• Ideal for perf. apps
• Enables Amazon EBS-like service

• Ideal for cost effective, scale-out
storage

• Fully distributed, API-accessible
• Ideal for backup, archiving, data

retention
• Enables Dropbox-like service

Workloads
• High change content
• Smaller, random R/W
• Higher / Bursty IO

• More static content
• Larger, sequential R/W
• Lower IOPS

Cinder & Swift: block & object store

▪ cinder-api: Authenticates and routes requests

▪ cinder-scheduler: Scheduling/routing volume requests to the service

▪ cinder-volume: Managing block storage devices

Cinder components

cinder create --display_name test 1

 Creates an Logic Volume into the Volume Group

cinder list

nova volume-attach vm1 81c8c61c-4889-423e-a9f4-05663b1e4b48 /dev/vda

 Creates a unique iSCSI IQN exposed to the compute node

 Compute node has an active iSCSI session

 Libvirt uses the local storage

 VM gets a new disk (/dev/vda)

How it works?

▪ Volume types / actions / extension / snapshots / transfer / backups

▪ Groups creation / replication/ snapshots / types

▪ Quota / QoS, and more……

Cinder APIs

View full API at:

https://docs.openstack.org/api-
ref/block-storage/v3/index.html

▪ Connects with Glance to support volume creation from image

Cinder APIs w/ Glance

▪ Self service UI, a python WSGI application

▪ Interact with all other services (nova, cinder, glance, swift, neutron)

Horizon

▪ Many OpenStack services, many API endpoints

▪ (endpoint = a network-accessible address, described by URL)

▪ How to authenticate them?

▪ Who manages the authoritzation?

▪ How can I know which endpoint that I want to access?

▪ OpenStack Keystone identity service for authentication & authorization

▪ Usually installed as the first service

▪ Mainly two primary functions: user management + service catalog

Keystone: safety first !!

"Keystone provides Identity, Token, Catalog and Policy services for use
specifically by projects in the OpenStack family.“

▪ As a user:

▪ Get a token

▪ Get the service catalog

▪ As an admin, defines:

▪ Users, Projects, Roles, Roles for users on a project

▪ Services, Endpoints for services

▪ (roles=assigned rights and privileges)

▪ As a service

▪ Validate a token

▪ Tracks installed services and where to locate them

▪ Get a trust to impersonate user

At the core of OpenStack

Keystone sequence diagram

▪ Randomly generated UUID4 hexadecimal values provide uniqueness

▪ Pros: better user experience, as the simplest and smallest token format

▪ Cons: need go back to Keystone server for validation

Token formats - UUID

▪ X509 standard cryptographically signed document

▪ “Z” in PKIZ means compressed PKI

▪ Pros: token validation w/o Keystone

▪ Cons: larger than standard HTTP header size, need complex configuration

Token formats – PKI / PKIZ

▪ adminURL: for admin users

▪ internalURL: other services use to talk to each other

▪ publicURL: everyone else accessing the service endpoint

▪ Policy provides a rule-based authorization engine and the associated rule

management interface, see /etc/keystone/policy.json

Service catalog and policy

▪ Supports many network topologies and services

▪ L3: self-tenant provisioning

▪ Security (ingress + egress rules support)

▪ LBaaS (Load Balancing, now Octavia)

▪ VPNaaS

▪ Supports overlay with GRE

▪ Open to 3rd party solution

▪ Vmware NSX plugin

▪ LinuxBridge plugin (deprecated)

▪ OVS plugin

▪ Cisco UCS plugin

Neutron: network service

▪ Nova

▪ Neutron

Neutron components

Clients Neutron Service Backend Networks

OpenStack network connectivity

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

2

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

2
3

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

2
3

4

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

2
3

4

5

Put together: instance boot step

Identity Dashboard Orchestration

Metering Image Service

Block / Object
Storage

Networking Compute

Cloud User

1

2
3

4

5 6

More details ……

Image
Service
(Glance)

Object
Storage
(Swift)

Networking
(Neutron)

Block
Storage
(Cinder)

Identity
(Keystone)

Dashboard
(Horizon)

Provides UI
for other projects

Provides Authentication
and Service Catalog for
other Projects

Compute
(Nova)

Provides
Images

Stores
Images
as
ObjectsProvides

volumes

Provides
network
connectivity

▪ Encryption plays a key role in cloud platform

▪ Protect data against leaks

▪ Personal Health Information (PHI)

▪ Credit Card Payment Data (PCI)

▪ AI training data

▪ Intellectual Property

▪ In shared hosting environments, each tenant must only have access to

their own stuff

▪ Per-Tenant or Per-Volume encryption keys facilitate this

▪ Security Best Practice

▪ Save keys away from your encrypted data, even away from yourself

Advanced topic: key protection

▪ Provides:

▪ RESTful API for Secrets Management

▪ Pluggable Backends: Crypto, PKCS#11, KMIP, SGX, etc

▪ Integration with Nova, Cinder, and Swift, Neutron, Heat, etc

▪ Built to Scale

Barbican: key management system (KMS)

Store a payload to Barbican:
$ openstack secret store --name testSecret --payload 'TestPayload’

Fetch the stored secret:
$ openstack secret get

https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-
5ba69cb18719

▪ Volume decrypted on the hypervisor (with Cinder) instead of the guest OS

▪ No agent in VM required

▪ Works with any operating system and works with bootable volumes

▪ Protects data at rest and in-transit to your hypervisor

▪ Every volume is protected by it’s own unique key

▪ How to protect Barbican itself?

▪ Deploy KMS and DB securely in a locked cabinet with limited physical access

▪ Set private Barbican instance not accessible to tenants

▪ Use SSL to protect key requests in-transit to hypervisors

▪ Even more advanced, use Trusted Execution Environment (TEE) such as SGX *

Use case: Cinder encryption

* Somnath Chakrabarti et al., “Intel SGX Enabled Key Manager Service with OpenStack Barbican”, in arXiv, 2017

Creating an encrypted volume

At least you
need to

consider …

Compute

Storage

NetworkUI

Safety

Recap: towards a minimum cloud

• Block storage
• Object storage
• File storage
• Image storage

• VM
• Container
• Function

• SDN
• Load balancing
• DNS

• Frontend
• API proxy
• Monitoring

• Authentication
• KMS
• Access control

▪ Default host os: centos 7.2.x

▪ Install OpenStack via “packstack”:

▪ $ yum –y install openstack-packstack

▪ Generate configuration:

▪ $ packstack --gen-answer-file=/root/myanswer.txt

▪ Modify configuration file according to:

▪ Network interface

▪ DB admin password

▪ Control, compute, network node IP addresses in a cluster deployment

▪ VLAN configuration for ML2 and OVS

OpenStack Liberty deployment

▪ Configure network interface:

▪ OVSPort interface at “/etc/sysconfig/network-scripts/ifcfg-eth0”

▪ OVSBridge for outside at “/etc/sysconfig/network-scripts/ifcfg-br-ex”

▪ Login into OpenStack dashboard

▪ Username and password defined in “/root/keystonerc_admin”

OpenStack Liberty deployment

▪ Image creation and network creation

▪ Upload image with QCOW2 format (mentioned before)

▪ Choose network supplier VXLAN

OpenStack Liberty deployment

▪ User management and project management

▪ Assign role for each user

▪ Assign privilege for each user in the project

OpenStack Liberty deployment

▪ Setup internal network and access control

▪ Connect the created internal network with router to enable outside comm.

▪ Add ICMP and TCP, verify with “ping”

From user’s perspective

▪ Create VM with assigned access control and network interface

From user’s perspective

▪ Now you may SSH into your VM

▪ Other advanced functionality includes:

▪ Attach network storage to your VM

▪ Load balancing among multiple VMs

▪ Stack deployment

▪ Dashboard customization

▪ Creating docker containers

From user’s perspective

▪ https://cloudarchitectmusings.com/2013/11/18/laying-cinder-block-volumes-in-openstack-part-1-the-basics/
▪ https://events.static.linuxfound.org/sites/events/files/slides/CloudOpenJapan2014-Kimura_0.pdf
▪ https://www.slideshare.net/prk1980/cloud-orchestration-major-tools-comparision
▪ https://www.linux-kvm.org/images/7/7b/Kvm-forum-2013-openstack.pdf
▪ https://www.redhat.com/en/topics/cloud-computing/cloud-vs-virtualization
▪ https://www.programmersought.com/article/20663670268/
▪ https://www.slideshare.net/eprasad/keystone-openstack-identity-service
▪ https://www.cisco.com/c/dam/global/en_ca/assets/ciscoconnect/2014/pdfs/open_stack_deployment_in_the_enterprise_josh_k

aya_mike_perron.pdf
▪ https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux_openstack_platform/7/html/networking_guide/openstack_networking_concepts
▪ https://www.slideshare.net/CodeOps/containers-and-openstack-a-happy-marriage-madhuri-intel-cc18
▪ https://www.slideshare.net/devananda1/ods-havana-provisioning-bare-metal-with-open-stack
▪ https://object-storage-ca-ymq-1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/www-assets-prod/pdf-

downloads/Containers-and-OpenStack.pdf
▪ https://object-storage-ca-ymq-1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/www-assets-

prod/presentation-media/OSSummitAtlanta2014-NovaLibvirtKVM2.pdf

Reference

谢谢！

Cinder & Nova collaboration

▪ Symmetric, encrypt with Primary Key, decrypt with a list of Fernet keys

▪ Key size 256b = SHA256 HMAC Signing Key (128b) + AES Key (128b)

▪ Primary key: encrypt and decrypt, key file named with the highest index

▪ Secondary key: only decrypt, key file named not the highest or the lowest

▪ Staged key: key file named with the lowest index (0)

▪ Pros: no persistence, multiple data center deployment

▪ Cons: Validation performance impacted by #revocation events

Advanced token format – Fernet

Weakness

• Installation requirements
• Configurable but not very

easily customizable
• Community inclusion

• Very clean GUI
• Single Java code
• Weak AWS integration

• Young Codebase
• Uncertain future
• Initial configuration

Strengths

• Excellent commercial
support

• Fault tolerance
• Offers Hybrid solution with

AWS

• Well round GUI
• Stack is fairly simple
• Customization of the

storage backend

• Single Codebase
• Growing community
• Corporate support

Alternatives to OpenStack

▪ Magnum: Container specific APIs for multi-tenant containers-as-a-service

▪ Kolla: dynamic OpenStack control plane, services runs in containers

▪ Murano: catalog allowing deploying packaged Kubernetes applications

Modules for containers

▪ Libvirt是一个支持多种hypervisor的标准虚拟化管理框架

▪ 支持Xen，KVM（常用），Vmware，Hyper-V等多种hypervisor

附录1：Libvirt 介绍

▪ Libvirt支持了许多常用的功能：

▪ Libvirtd：最主要的守护进程，与其他 API 沟通

▪ Virt-manager：图形化管理器

▪ Guestfish：虚拟机（客户机）文件系统管理

▪ Virsh (cli for libvirt)：虚拟化命令行

▪ Virt-install / virt-clone / virt-convert

▪ Qemu-img：磁盘管理

▪ Libvirt的局限性:

▪ 目前没有易用的网页接口（web interface），依赖命令行操作

▪ Virt-manager 可以与远端（remote）hypervisor 通信，但是 virt-manager 仅

能在 linux下运行

▪ 其使用的 XML 格式与其他平台不通用，不易从头构建

附录1：Libvirt 介绍

▪ 安装libvirt及python支持libvirt-python：

▪ 以下示例的目的是获取一个vCPU的运行状态：

附录1：Libvirt 介绍
$ sudo apt install pkg-config libvirt-dev
$ pip3 install libvirt-python

更多libvirt API请参考官方文档：

https://libvirt.org/docs/libvirt-appdev-guide-python/en-US/pdf/Version-
1.1-Libvirt_Application_Development_Guide_Using_Python-en-US.pdf

